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Microwave propagation loss in the atmosphere can be inferred from microwave
radiometric noise temperature measurements. The relevant equations are given and a
derivation and calculation is made assuming various physical models. Comparison is made
with the commonly used lumped element atmospheric model (isothermal and uniform
loss) and the model with linear temperature and exponential loss distributions. The
results are useful for estimating the integral inversion differences due to the model
selection. This indicates that the comimonly used lumped element atmospheric model is a
very good approximation with judicious choice of the effective physical temperature. For
the worst case comparison, the lumped element model agrees with the variable parameter
model within 0.2 dB up to a propagation loss of 3 dB.

l. Summary

Microwave propagation loss in the atmosphere can be
inferred from microwave radiometric noise temperature mea-
surements. Conventionally, the total propagation loss ratio L is
calculated from measurements of the noise temperature contri-
bution T" using the relationship 7" = Tp(1 - 1/L) where Tp is
a mean effective physical temperature of the atmosphere. This
relationship assumes that the propagation loss and physical
temperature can be treated as lumped constants. An “incor-
rect” choice for Tp results in an error in the determination of
L. The equation for the radiometric noise temperature contri-
bution due to the propagation path are derived for various
combinations of loss and temperature contributions. These are
useful to reduce the error in propagation loss determination.
Although it may not be practical or necessary to use this
technique in most applications, the analysis is valuable for
estimating the integral inversion difference due to the model
selection. Conversely, the technique can be used to improve
the estimate of Tp required for computation of L using the
lumped element model.

Il. Introduction

Radiometric microwave noise temperature measurements
can be used to estimate atmospheric transmission loss (Refs. 1,
2, 3, 4). Treating the atmosphere as a lumped element, the
noise temperature contribution is given by

T" = Tp(1-1/L) (¢5)]
where
L = propagation path loss (absorption only, no scatter-
ing), ratio [L(dB) = 101log,,L],> 1.0
Tp = atmosphere mean effective physical temperature,

Kelvins

The atmospheric loss is usually calculated from radiometric
measurements of T using an assumed value for 7P (=260-
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280 K). The purpose of this article is to compare values com-
puted for L in this manner with those computed using a more
realistic temperature and loss distribution, These results can
either be used directly or as a measure of modeling error in

the integral inversion.

The translated radiometric noise temperature (Fig. 1) of a
source at a temperature 7' (Ref.5) propagating through a
medium (such as the atmosphere or a transmission line) is
given by (assuming hf << kT, so that the Rayleigh-Jeans law
low-frequency approximation to Planck’s radiation law is valid
and the noise temperature is proportional to noise power)

T = T"+T/L )
where
T" = radiometric noise temperature contribution of the
propagation path, K
2
f a(x)dx
0
L=e¢

a(x) = transmission medium propagation constant! at x,
nepers/m, [=(d B/m)/10 logqel

and
Q r L
) e L ax)dx
T" = ax)T(x)e dx
0
R, j(; Fa(x)ax'
=7 J‘ a(x)T(x) e dx 3)
()}
where
T(x) = physical temperature at x, Kelvins

IThis definition is consistent with radiative transfer theory (Ref. 6) and
should not be confused with the transmission line voltage propagation
constant (dB/m)/20 logyq €.

74

IV. Models

The first model is the simplest. Assume uniform tempera-
ture and propagation constant distributions

Tx) = Ip
alx) = a
Then
L =e"
and

9
T =@f e**dx
0

= Ip(1-1/L) C))
This derivation agrees with Eq. (1).

The second model is the most realistic investigated. Assume
for the propagation path linear temperature and exponential
propagation constant distributions (Fig. 2)

T(x) = T, +(T,- T )x/®

ax) = o, e %)
where
T,,T, = physical temperatures of the propagation path
at x =0 and £, Kelvins ‘
a,a, = propagation constants of the propagation path,
at x = 0 and £, nepers/m,
e = (1/9)8n (a,/e,).
Then
o P f x oy eax’dx'
T = J- e [T, +(T,~ T)x/%) e dx
0




and replacing x with £y
&
aIQ 1 . __1_. eaQy_l
n o _ 1 Q _
T" = I eV [T +(T,- Tyl e® dy (6)
0
where
o 8 [(ay/a) - 1)
W (o, o) — 1 Ln Len (o, jo,)
L=e 2t ,o. 8= 2 1

- (o, /o) - 1

These models and others are illustrated in Table 1. Compu-
tation of T" is possible in terms of L, T, T, and the ratio
(@ry/0r;) using numerical integration. Conversely, an estimate
of the total atmospheric loss L may be calculated using a
measured value of 7" and an atmospheric model with param-
eters T, T, and the attenuation ratio (a, /o, ) with iterative
solutions. Models 1 and 2 are compared in Fig. 3 assuming
(0y/a,)=10,T, =250 K, T, =290 K. For Model 1,

Case 1:

Tp =~ ™

This provides a rough estimate of the effective physical
temperature as the mean of the upper and lower temperatures
of the lossy propagation path.

_ o, o,
Tp = OL1+0£2 T1+ o, to, T2 ®)

* This provides a judicious choice of effective physical tem-
perature, weighted toward the region of higher loss, improving
the agreement between models.

Case 2:

Case 3:

Ip~d|—2 Vr ep{—2 )7 )
p = +
al + 062 1 al + 012 2

This formulation can be used for even closer agreement
between models. 4 and B are cflosen to minimize the model

difference with perturbations in T, and T,. For example,
using (a,/a;) = 10, L =10, and T; = 270 K (20 K increase)
and T, = 290K (unchanged) we have from Eq. (6), T" =
257.7K. Equation (1) is then satisfied with Tp = 286.3 K.
Similarly for T, = 250 K (unchanged) and 7, = 310K (20K
increase), T" = 269.0 K and Tp = 299.0 K. Then from Eq. (9),
solving two equations with two unknowns,

A =20
B = 090
Tp = 282.7K (for T, = 250K, T, = 290 K)

The effect of a different (a,/a;) or other changesin T, or
T, requires modification of A and B or further refinement of
Eq. (9) as a function of @, a,, Ty, and T),.

These three cases progressively improve the agreement with
the variable parameter model (Model 2) at the expense of
increasing complexity. The appropriate model can be selected
on the basis of the accuracy required.

These models are all in good agreement at low loss (less
than 3 dB). Moderate values of propagation loss can be deter-
mined with small error from noise temperature measurements
up to about 200 K. At high loss (Z > 10 dB) the curve of 7" vs
L (Fig. 3) flattens out so that very small errors in noise
temperature measurement or modeling will result in very large
errors in the propagation loss computation.

Now consider the situation where it is desired to determine
the total atmospheric loss from radiometric noise temperature
measurements T". For Model 2, Eq. (6) can be used with
measured upper and lower temperatures T, and T, and an
assumed attenuation ratio over the region x =0 to £ (= 30
km for oxygen and 2= 10 km for water vapor). An iterative
computer solution can be performed until the value of L is
obtained to satisfy Eq. (6). This inversion may not always be
practical. An alternative, simpler method uses the lumped
element model (Model 1) with a corrected Tp as described
before:

(10)

This is evaluated using the same parameters as used in Fig. 3
and is compared with the variable parameter model (Model 2).
The results are shown in Table 2 and Fig. 4 for Tp corrected
using cases 1,2, and 3. For the worst case comparison (Case 1),
the lumped element model agrees with the variable parameter
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model (Model 2) within 0.2 dB up to a loss of 3 dB. Again,
Cases 2 and 3 provide better agreement of the expense of
added complexity.

V. Conclusion

It is shown that determination of atmospheric loss from
microwave radiometric noise temperature measurements is not
sensitive to temperature and loss distribution assumptions at
low loss (L < 3 dB). For the worst case comparison (Case 1),

the lumped element model agrees with the variable parameter
model (Model 2) within 0.2 dB up to a total loss of 3 dB. With
higher losses, accurate inversions can be made by using a
model which is closer to reality. Techniques are suggested for
improving the atmospheric loss determination from radio-
metric noise temperature measurements using the lumped ele-
ment model with corrected Tp or iterative computation of the
appropriate integral solution. Although these techniques have
not been compared with field measurements, the model com-
parisons investigated provide an estimate of the atmospheric
loss determination error from radiometric measurements.
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Table 1.

Summary of propagation path noise temperature contribution (T”) calculations

Parameter
a(x) T(x) L T
Model
of
1 o T, e T,(1-1/L)
(ag -t I e
a R aqy+— (€@ -1)
ax PP A e U e Ty +(T,-T)y] d
2 Otle Tl (2_ l)? e I € [ 1 (2_ l)y] Ly
(}
X .
3 o T +(Ty-TPT &° Ty - 1LY+ (Ty =Ty (1 -1/en L+ 1/L en L)
(al +o¢2)9
4 + x T 2 T (1-1/L
Otl (0[2"‘11)? r e p( - /)
042!2
. x - b - , (Ty/TP- 1L
v 1 € Lion (Ty/T/n L] + 1
1 on L (o
(@] +ay)® %2 ‘1 oy
X x 2 2en L ) o)
6 SR T +(Ty-Ty e = [H(ZI- y|e [Ty +(Ty-TPyldy
Otl 0
where y = x/®
apay = alx)atx=0,2(0=0,1)
T, Ty =T®atx=0,2(=0,1)
a? =

on (°‘2/°‘1)

be = %n (T2/T1)

(ayfa) -1

en L on (a2/a1)

77




78

Table 2. Comparison of atmospheric loss calculations using variable parameter and lumped
element models

Calculated Atmospheric Loss, L (dB)

T" ®)
bLumped
Measured aVariable Element Difference
Atmospheric Parameter Model
Noise Model (Model 1)
Temperature (Model 2)
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
57.1 1.0 1.0 1.0 1.0 0.0 0.0 0.0
139.5 3.0 3.2 29 3.0 0.2 0.1 0.0
210.6 6.0 6.7 58" 5.9 0.7 0.2 0.1
254.4 10.0 12.4 9.5 10.0 2.4 0.5 0.0

2T, =250K, T, = 290K, (agfaqg) = 10
bCase 1,2,3;Tp=270K, 286.4 K and 282.7K respectively.
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Fig. 1. Thermal noise source, T, with propagation constant «(x) and
physical temperature T(x) functions of position x along the propaga-
tion path, resulting In output noise temperature T’

T{x) = 'l'1 + (T2 - T‘)x/ﬂ

R ————— - —

—_

T T

1 2 @2

Fig. 2. Representations of temperature and propagation constant
distributions in the propagation path for variable parameter model
(Model 2)
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Fig. 3. Noise temperature contribution vs propagation loss
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CALCULATED PROPAGATION LOSS (L), dB
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Fig. 4. Propagation loss comparison




